
Review of finite approximations, Archimedean
and non-Archimedean

Trond Digernes

Department of Mathematical Sciences
The Norwegian University of Science and Technology

Sixth International Conference on p-adic Mathematical
Physics and its Applications

CINVESTAV, Mexico City, October 23-27, 2017



Outline
1 Finite approximations over the reals

Discrete spectrum
Mixed spectrum: Atomic potential (from the thesis of Erik M. Bakken)

Hamiltonian inside a finite box
Convergence theorems

2 Finite approximations over local fields (discrete spectrum)
Preliminaries
Finite models
Standard methods
Stochastic methods

Stochastics at the finite level

3 References

4 Appendix: Numerical results
Numerical results over R
Numerical results over K



Outline
1 Finite approximations over the reals

Discrete spectrum
Mixed spectrum: Atomic potential (from the thesis of Erik M. Bakken)

Hamiltonian inside a finite box
Convergence theorems

2 Finite approximations over local fields (discrete spectrum)
Preliminaries
Finite models
Standard methods
Stochastic methods

Stochastics at the finite level

3 References

4 Appendix: Numerical results
Numerical results over R
Numerical results over K



Model over R
A 1-dimensional Hamiltonian operator of the form

H = −∆ + V

where ∆ = d2

dx2 is the Laplacian and V is multiplication by a
function v , both regarded as operators on suitable domains in
L2(R).
With operators P and Q defined as (Pf )(x) = 1

i f ′(x) and
(Qf )(x) = xf (x) on suitable domains, we have P = F−1QF
where F is the Fourier transform:

F f (x) =
1√
2π

∫ ∞
−∞

f (y)e−ixydy .

Notice that −∆ = P2 = F−1Q2F , and that

Q2f (x) = x2f (x) = |x |2f (x), H = P2 + V .



Infinite discrete model over R

ε > 0, G(ε) = εZ.
(Thf )(x) = f (x + h), h ∈ G(ε), f any function on G(ε).

D(ε)+ = ε−1(Tε − I), D(ε)− = ε−1(I − T−ε)

∆(ε) = D(ε)−D(ε)+

On L2(G(ε)) the Th are unitary, D(ε)− = −(D(ε)+)∗ and ∆(ε)
are bounded, and

(−∆(ε)f , f ) = ||D(ε)+f ||2, f ∈ L2(G(ε))

Hamiltonian H(ε) on L2(G(ε)): H(ε) = −∆(ε) + Vε, Vε acting as
multiplication by the restriction of V to G(ε).



Finite models over R

N0 = N0(ε): an integer ≥ 1 depending on ε; εN0 →∞ as ε→ 0.
N = 2N0 + 1. G(ε)0 = {rε|r = 0,±1, . . . ,±N0}.
We get various models depending on boundary conditions. We
will describe the following two: periodic model and the
"Schwinger model".



Periodic model over R

H(ε)(p) = −∆(ε)(p) + Vε.
Identify G(ε)0 with the finite group G(ε)/ (N(ε) ·G(ε)), and
hence L2(G(ε)0) with the space of functions on G(ε) invariant
under Th, h ∈ N(ε) ·G(ε).
D(ε)±(p) are the restrictions of D(ε)± to this space.

∆(ε)(p) = D(ε)−(p)D(ε)+(p), (−∆(ε)(p)f , f ) = ||D(ε)+(p)f ||2.



The "Schwinger model" 1 over R

Also a periodic model, but with different definition of Laplacian
and with explicit relation between ε and N.

H(ε)(s) = −∆(ε)(s) + Vε.
ε = εN = (2π/N)1/2.
Fε = the Fourier transform on L2(G(ε)/N ·G(ε))
qε = multiplication by the coordinate:
(qεf )(x) = xf (x), x ∈ G(ε)
pε = F−1

ε qεFε
∆(ε)(s) = −p2

ε

1So named because Julian Schwinger used it in his studies of finite
quantum mechanics.



Remarkable accuracy of the Schwinger
model

For reasons not fully understood the Schwinger model is far
superior to the usual finite difference model as far as numerical
results are concerned (see the Appendix for numerical results
and comparison with the finite difference operator).



In [DVV94] also a third class of finite models were considered;
these were given superscript 0. The main result of that paper
could then be stated as follows2:

2
More precisely, this is the main result of the functional analytic part of the paper. In the probabilistic part a

somewhat stronger convergence result was optained for stochastic Hamiltonians.



Varadarajan, Varadhan, TD [DVV94]

Theorem
Let (εn) be a sequence tending to 0 and ∗ = p, s,0. Let
0 ≤ h1 < h2 < . . . be the eigenvalues of H and Tj the
eigensubspace corresponding to hj . Then:
(i) if J is a compact subset of [0,∞) not containing any
eigenvalues of H, then no eigenvalue of H(εn)(∗) belongs to J if
n is large enough
(ii) if J is a compact neighborhood of hj not containing any
hi , i 6= j , all the eigenvalues of H(εn)(∗) that belong to J
converge to hj ; if Tnj is the span of the corresponding
eigenspaces, dim(Tnj) = dim(Tj) for n large enough, and there
is an orthonormal basis of Tnj that converges to an orthonormal
basis of Tj .
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Atomic potential: from the thesis of
Erik M. Bakken

The next 13 slides, dealing with atomic potential, are based on
Ch. 5 of Erik M. Bakken’s PhD thesis [Bak16].



Setup
Hamiltonian H = −∆ + V acting in L2(R3). (Vf )(x) = v(x)f (x)
for some suitable function v . Later v will be specialized to the
radial function v(r) = −1/r .
∆ = Laplacian.

Finite model:
Finite grid G(ε):
{rε : r = −n0,−n0 + 1, ...,n0 − 1,n0}3, n = 2n0 + 1.
{ei}3i=1: an orthonormal basis for R3.
Discrete Laplacian in the direction i :

∆ε,i f (x) =
f (x + εei)− 2f (x) + f (x − εei)

ε2 , x ∈ G(ε). (1)

Boundary conditions: f is interpreted to be zero in the above
formula at all points which are not in the grid.
Discrete Laplacian: ∆ε =

∑3
i=1 ∆ε,i .

Potential on the grid: Vεf (x) = vε(x)f (x), vε: the restriction of v
to the grid.



Imbedding
Imbedding # : L2(G(ε))→ L2(R3) given by

f # = ε−3/2
∑

x∈G(ε)

f (x)χR(x), (2)

where χR(x) is the characteristic function of the set
R(x) = {(y1, y2, y3) ∈ R3 : xi − ε/2 ≤ yi < xi + ε/2, i = 1,2,3}.
We can view operators on L2(G(ε)) as operators on L2(R3) by
sending an operator A to QεAQε where Qε is the orthogonal
projection on the image of #. The projection is given by

Qεf =
∑

x∈G(ε)

1
ε3

∫
R(x)

f (x − y) dy · χR(x). (3)

When one imbeds a Hamiltonian this way, the spectrum of the
Hamiltonian is preserved except that 0 becomes an eigenvalue
of infinite multiplicity (whether or not 0 was an eigenvalue
before the imbedding).



Coulomb potential

We now set v(r) = −1/r . In this case the spectrum of the
Hamiltonian H = −∆ + V is known:
Eigenvalues: Ek = − 1

4k2 , k = 1,2,3, . . . .
Ek has multiplicity k2.
Continuous spectrum = [0,∞).



Definition (Coulomb-like Operator)
Let A be a self-adjoint operator which is bounded below, with
discrete spectrum below a constant c, and with
σess(A) = σcont(A) = [c,∞), where σcont(A) is the continuous
spectrum of A. Then we will call A a Coulomb-like operator.



Definition (Convergence of spectra)
Let A be a Coulomb-like operator and let An, n = 1,2, ... be
self-adjoint operators which are bounded below, and let An
have discrete spectrum. The eigenvalues of A are denoted by
λ1 ≤ λ2 ≤ ... and are counted with multiplicity. Assume that:

1 If J is a compact subset of R containing no eigenvalues of
A, then no eigenvalues of An will be in J for sufficiently
large n.

2 For every λ ∈ σ(A) there exists a sequence λn ∈ σ(An)
such that λn → λ. If J = [a,b] is a compact interval with
c < a < b, then PJ(An) converges strongly to PJ(A).

3 If J is a compact neighborhood containing the eigenvalue
λj , and no other eigenvalues of A different from λj , then all
the eigenvalues of An in J converge to λj . Furthermore
||PJ(An)− PJ(A)|| → 0 as n→∞.

We will then say that the spectrum of An converges to the
spectrum of A, and we will denote it by

σ(An)→ σ(A). (4)



Hamiltonian in a cube

To prove convergence of the finite quantum systems we will first
prove convergence inside a finite box.
The Hamiltonian in the open cube
Tb = {(x1, x2, x3) ∈ R3 : |xi | < b, i = 1,2,3} will be denoted by
Hb = −∆b + Vb, where ∆b is the Laplacian, and Vb acts as
multiplication by a modified version vb of the potential function
v (in order to deal with the singularity at the origin):

vb(r) =

{
−1

r if r > 1/b
−b if r ≤ 1/b.

(5)



Lemma
The Hamiltonian Hb has a compact resolvent, and thus a
discrete spectrum.

Lemma
The k’th eigenvalue for Hb is always bigger than or equal to the
k’th eigenvalue of H, that is, λb

k ≥ λk .

Proof.
This follows from a Max-Min theorem, by regarding C∞c (Tb) as
a subspace of C∞c (R3) (by setting functions in C∞c (Tb) equal to
zero outside Tb).



Since H is bounded from below, it can be made positive by
adding αI to it, for some α > 0. Also, if H is positive, so is Hb,
hence the α which makes H positive, makes Hb positive, too.
For this reason we will from now on assume H and Hb to be
positive (although we are actually working with H + αI and
Hb + αI).



The rest of the proof goes in two steps. First we show
convergence of the finite models inside a finite cube, and by
using bigger and bigger cubes we will in the second part show
convergence of the finite models in R3. It will be convenient to
use a different set of parameters than n and ε to describe the
grid when we prove convergence inside a fixed cube. So for the
open cube Tb = {(x1, x2, x3) ∈ R3 : |xi | < b, i = 1,2,3}, let

ε =
2b

n + 1
. (6)

Then for the grid G(ε) described above we will rather use the
notation Gb,n.



We will also need to imbed L2(Gb,n) into L2(Tb):

f # = ε−3/2
∑

x∈Gb,n

f (x)χR(x), (7)

where χR(x) is the characteristic function of the set
R(x) = {(y1, y2, y3) ∈ Tb : xi − ε/2 ≤ yi < xi + ε/2, i = 1,2,3}.
Note that with this imbedding, f #(x) will be zero if any of the
coordinates xi is less than ε/2 away from the boundary.
Imbedding the Hamiltonian has the same effect on the
spectrum as the imbedding into L2(R3): it preserves the
spectrum, except that 0 becomes an eigenvalue of infinite
multiplicity. We will now change notation for all operators on the
grid: Replace Hε by Hb,n, Vε by Vb,n, ∆ε,i by ∆b,n,i , ∆ε by ∆b,n,
and Qε by Qb,n. We will also use vb,n instead of vε, but vb,n is
now the restriction of the above defined vb (instead of v ) to the
grid. As we did for H and Hb, we will write Hb,n for Hb,n + αI.



Lemma
Hb,n converges strongly to Hb on C∞0 (T̄b) as n→∞.

Lemma
Let Kb,n = (I + Hb,n)−1, and let gb,n ∈ L2(Gb,n) with
||gb,n||L2(Gb,n) ≤ 1. Also let fb,n = Kb,ngb,n. Then the sequence

(f #
b,n)n is relatively compact in L2(Tb).

Using the two previous lemmas, the next theorem follows from
Lemma 2.3 and Theorem 2.4 in [DVV94].

Theorem
With Hb and Hb,n defined as above, σ(Hb,n)→ σ(Hb) as
n→∞, where the spectral convergence is in the sense of the
definition on slide 18.



Now we are ready to start proving that there is a sequence of
finite Hamiltonians Hb,n(b) such that σ(Hb,n(b))→ σ(H) as
b →∞.

Lemma
Let n(b)/b →∞ as b →∞. Then the operators Hb,n(b)

converge strongly to H on the common core C∞c (R3) as b →∞.

Lemma
For any sequence δb > 0 such that δb → 0 as b →∞, there
exists a sequence n(b) such that n(b)/b →∞ and
λ

b,n(b)
k ≥ λk − δb for k ≤ b.

Lemma
Let An be a sequence of self-adjoint operators with discrete
spectrum converging strongly to a Coulomb-like operator A on
a common core. If there exists a sequence δn → 0 such that
λn

k ≥ λk − δn for k ≤ n, then σ(An)→ σ(A).



Now we can use this lemma to get the main theorem. Notice
that the imbedded versions of the finite-dimensional operators
do not have purely discrete spectrum because 0 is in the
essential spectrum, but this does not matter since it comes
after the discrete spectrum of H and is a part of the essential
spectrum of H.

Theorem (Theorem 4.3 in [Bak16])
Let as before H be the Coulomb Hamiltonian, and Hb,n(b) the
finite-dimensional Hamiltonians associated to H. Let δb be a
sequence converging to 0 and let n(b)/b go to infinity as
b →∞ such that λb,n(b)

k ≥ λk − δb for k ≤ b. Then
σ(Hb,n(b))→ σ(H) as b →∞.
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Local fields I
A local field is a non-discrete, locally compact field. The only
connected local fields are R and C. Disconnected local fields
are, in fact, totally disconnected.

Every local field comes equipped with a canonical absolute
value which defines its topology. It is is induced by the Haar
measure, and is Archimedean in the case of R and C, and
non-Archimedean in all other cases. It coincides with the usual
absolute values for the fields R, C, and Qp.

For a general local field K we will denote the canonical
absolute value by | · | (for Qp we will still denote it by | · |p).



Local fields II

Convention
From now on the term ’local field’ means a (totally)
disconnected, non-discrete, locally compact field.

Let K be a local field with canonical absolute value | · |. Define

O = {x ∈ K : |x | ≤ 1}, P = {x ∈ K : |x | < 1}, U = O \ P.

O: a compact subring of K (the ring of integers). It is a discrete
valuation ring, i.e., a principal ideal domain with a unique
maximal ideal.
P: the unique non-zero maximal ideal of O, called the prime
ideal. Any element β ∈ P such that P = βO is called a
uniformizer (or a prime element) of K . For Qp one can choose
β = p.



Local fields III

U = O \ P: The group of units of O.
O/P: a finite field with q = pf elements (p: a prime number, f :
a natural number).

If β is a uniformizer, then |β| = 1/q. Range(| · |) = {qN : N ∈ Z}.

If S is a complete set of representatives for the residue classes
in O/P, every non-zero element x ∈ K can be written uniquely
in the form:

x = β−m(x0 + x1β + x2β
2 + · · · ),

where m ∈ Z, xj ∈ S, x0 6∈ P. With x written in this form, we
have |x | = qm.



Local fields IV

Theorem (Classification of local fields)
Characteristic zero. Every local field of characterisitic zero is a
finite extension of Qp for some p.
Positive characteristic. Every local field of positive characteristic
p is isomorphic to the field Fq((t)) of Laurent series over a finite
field Fq, where q = pf for some integer f ≥ 1.



Model over K

We use the complex Hilbert space L2(K ) with respect to Haar
measure on K .
The operators P and Q cannot be defined as in the real case
since in general we cannot multiply a complex number by an
element of K .
However, in the real case the Laplacian can also be expressed
as ∆ = −F−1Q2F . In the local field case it is therefore natural
to define the Laplacian as:

∆ = −F−1Q2F

where now
Q2f (x) = |x |2pf (x).



With P = F−1QF we have ∆ = −P2, and for the Hamiltonian
we take

H = −∆ + V = P2 + V ,

where the potential V is given by (Vf )(x) = v(x)f (x) for a
suitable function v on K (f ∈ L2(K ), x ∈ K ).
In the local field setting it is customary to study H = Pα + V for
any α > 0, since the qualitative behavior of Pα and H does not
change with α > 0. So we finally take

H = Pα + V

as our object of study.
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Finite model over K

Let n be a natural number, set Bn = H−n = β−nO (ball of radius
qn) and Gn = H−n/Hn.
Gn is a finite cyclic group with q2n elements and with generator
= q−n + Hn.
Since Hn is an open subset of K , we obtain a Haar measure µn
on Gn = H−n/Hn from the Haar measure µ of K by setting
µn(x + Hn) = µ(x + Hn) = µ(Hn) = q−n, for
x + Hn ∈ Gn = H−n/Hn.
So each point of Gn has mass = q−n, and the total mass of Gn
is q2n · q−n = qn.
Each element of Gn has a unique representative of the form
a−nβ

−n + a−n+1β
−n+1 + · · ·+ a−1β

−1 + a0 + a1β + · · ·+
an−2β

n−2 + an−1β
n−1, ai ∈ S. We denote this set by Xn, and call

it the canonical set of representatives for Gn; we also give it the
group structure coming from its natural identification with Gn.



Imbedding

With the above choice of Haar measure on Gn the mapping
which sends the characteristic function of the point x + Hn in Gn
to the characteristic function of the subset x + Hn in K ,
becomes an isometric imbedding of L2(Gn) into L2(K ).

Important subspaces of L2(K ):
Cn = {f ∈ L2(K )| supp(f ) ⊂ Bn}
Sn = {f ∈ L2(K )|f is locally constant of order ≤ p−n}
Dn = Cn ∩ Sn
We have: FCn = Sn and FSn = Cn, so FDn = Dn.



Commutation rules

Let Cn and Sn be the orthogonal projections on Cn and Sn,
respectively:
Cnf = f · 1Bn , Snf (x) = qn ∫

Hn
f (x + y)dn(y).

Cn and Sn commute, so Dn = CnSn is the orthogonal projection
on Dn.
Furthermore, Dn commutes with the Fourier transform F on K ,
and FDn = DnF coincides with the finite Fourier transform Fn
on Gn.



Dynamical operators for the finite
model

Functions on the finite grid Gn can be identified with functions
on K which have support in Bn and are invariant under
translation by elements of Hn. For the position operator Qn on
L2(Gn) we take the restriction to these functions of the position
operator Q on L2(K ): (Qf )(x) = |x |pf (x). The momentum
operator Pn = F−1

n QnFn then becomes the restriction of
P = F−1QF to L2(Gn). For our finite Hamiltonian we take3

Hn = Pα
n + Vn

3See slide 33 for a comment on the exponent α.
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Uniform compactness

Definition (Uniform compactness)
A sequence of bounded operators (Mn) on a Hilbert space H is
said to satisfy a condition of uniform compactness 4 if the
following conditions hold:

1 The sequence (Mn) is uniformly bounded.
2 There are subspaces Ln with Ln invariant under Mn such

that for every sequence (gn) with gn ∈ Ln and ||gn|| ≤ 1,
the sequence (Mngn) is relatively compact in H.

4Notice that the individual operators Mn are not required to be compact on
the whole space H (and in our applications they will not be). Still, if the above
conditions are fulfilled, we will say that the sequence (Mn) is uniformly
compact, even if each Mn is compact only on the subspace Mn.



For our purposes the usefulness of uniform compactness lies in
the following two results. They give a strong connection
between the spectral data of the approximating operators (Mn)
and their strong limit M.

Lemma
Let Mn, Ln be as in the definition above, and assume that the
sequence Mn converges strongly to a bounded operator M.
Assume further that there are eigenvectors gn and
corresponding eigenvalues λn such that gn ∈ Ln, ||gn|| = 1 and
Mngn = λngn. Then any non-zero cluster point λ0 of the
sequence (λn) is an eigenvalue of M, and there is a
subsequence of (gn) which converges to a vector g such that
Mg = λ0g.



Proposition (Cfr. Lemma 3 in [DVV94])
Keep the notation and assumptions of the previous lemma. In
addition, assume the following: (i) The operators Mn,M are
self-adjoint, and 0 ≤ M,Mn ≤ I, (ii) M is compact on H, and Mn
is compact on Ln. Then the following hold:

1 If J is a compact subset of (0,1] with J ∩ σp(M) = ∅, then
J ∩ σp(Mn) = ∅ for large n.

2 If λ ∈ σp(M), there exists a sequence (λn) with λn ∈ σ(Mn)
such that λn → λ. Further, if J is a compact neighborhood
of an eigenvalue λ ∈ σp(M), not containing any other
eigenvalues of M, then any sequence (λn) with
λn ∈ σp(Mn) ∩ J converges to λ.

3 Let λ and J be as in (2). Then dim PMn (J) = dim PM(J) for
large n, and for each orthonormal basis {e1, . . . ,em} for
r
(
PM(J)

)
there is, for each n, an orthonormal basis

{en
1, . . . ,e

n
m} for r

(
PMn (J)

)
such that limn→∞ en

i = ei ,
i = 1, . . . ,m.



Proposition
With Mn = (I + Hn)−1, Ln = Dn ' L2(Gn), and H = L2(K ), the
resolvents (I + Hn)−1 are uniformly compact in the sense of
Definition 14.



The analog of the main convergence theorem in [DVV94] can
now be established for a general local field in [BD15]:



Main convergence theorem5

Analog of Theorem 4 in [DVV94]

Theorem

1 If J is a compact subset of [0,∞) with J ∩ σ(H) = ∅, then
J ∩ σ(Hn) = ∅ for large n.

2 If λ ∈ σ(H), there exists a sequence (λn) with λn ∈ σ(Hn)
such that λn → λ. Further, if J is a compact neighborhood
of an eigenvalue λ ∈ σ(H), not containing any other
eigenvalues of H, then any sequence λn with
λn ∈ σ(Hn) ∩ J converges to λ.

3 Let λ and J be as in (2). Then dim PHn (J) = dim PH(J) for
large n, and for each orthonormal basis {e1, . . . ,em} for
Ran

(
PH(J)

)
there is, for each n, an orthonormal basis

{en
1, . . . ,e

n
m} for Ran

(
PHn (J)

)
such that limn→∞ en

i = ei ,
i = 1, . . . ,m.

5σ(A) = spectrum of A. PA = spectral measure of A.
Ran(A) = range of A.
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In [DVV94] two proofs of the main theorem were given: a
functional analytic one and a stochastic one. The stochastic
proof gave a stronger convergence result for the eigenfunctions
(uniform convergence on compacta). The proof in [BD15] used
functional analytic methods. It is of interest to give a stochastic
proof also in the non-Archimedean case, and this has been
accomplished in [BDW17]. We now give a review of the results
in [BDW17].



Brownian motion and the heat equation
over R I

Brownian motion is described by a family of Wiener measures
(Wx )x∈R, which in turn are generated by the probability
densities pt (x) = 1√

2t
e−x2/4t in the following sense:∫

C([0,∞):R)
f (ω(t))dWx (ω) =

1√
2π

∫
R

f (y)pt (x − y)dy

for all "observables" f belonging to a suitable class of functions
on R. The function u(x , t) = pt (x) is a fundamental solution of
the heat equation

∂u
∂t

(x , t) = ∆u(x , t) (8)



Brownian motion and the heat equation
over R II

which by Fourier transform becomes

∂û
∂t

(ξ, t) = −ξ2û(ξ, t) (9)

and so

p̂t (ξ) = û(ξ, t) = e−tξ2
, (10)

taking into account that pt (x) is a fundamental solution. The
(pt )t>0 form a semi-group under convolution, and thus give rise
to a semi-group of operators (Tt )t>0 by Tt f = pt ∗ f . The
infinitesimal generator of (Tt )t>0 is the Laplacian ∆ (on a
suitable domain), so we can also write et∆f = pt ∗ f .



Brownian motion and the heat equation
over K I

Over a local field K we still let t be a positive real parameter,
but the role of the Laplacian ∆ is played by the operator −Pα

(remember that ∆ = −P2 over R), and so the heat equation (8)
becomes

∂u
∂t

(x , t) = −(Pαu)(x , t), i.e.:
∂u
∂t

(x , t) = −(F−1| · |αFu)(x , t)

(11)

thus

∂û
∂t

(ξ, t) = −|ξ|αû(ξ, t) (12)



Brownian motion and the heat equation
over K II

giving

û(ξ, t) = e−t |ξ|α (13)

by a similar normalization as above. In analogy with the real
case one now defines

pt (x) = (F−1(e−t |·|α))(x) =

∫
K

e−t |ξ|αχ(xξ) dξ. (14)

The (pt )t>0 again form a semi-group under convolution (since
clearly (p̂t )t>0 form a semi-group under multiplication), and∫

K pt (x)dx = 1 for all t > 0 (since p̂t (0) = 1 for all t > 0). Thus
the only thing missing for the (pt )t>0 to generate a Wiener
measure as above, is the positivity of the (pt )t>0. And this has
been proved by several authors in various settings (see [Koc01,
Ch. 4] and references therein, and [Var97]).



Brownian motion and the heat equation
at the finite level I

For our finite model we pursue the above analogy and define

pt ,n(x) = (F−1
n e−t |.|α)(x), (15)

in analogy with (14). Here we regard e−t |.|α as a function on Xn.
We still have

e−tPαn f = pt ,n ∗ f (16)

since

(e−tPαn f )(x) = (e−tF−1
n Qαn Fn f )(x) = (F−1

n e−tQαn Fnf )(x)

= (F−1
n (e−t |·|αFnf ))(x) = (F−1

n (e−t |·|α) ∗ f )(x)

= (pt ,n ∗ f )(x),



Brownian motion and the heat equation
at the finite level II

where the convolution ∗ now is over Xn:

(f ∗ g)(x) =

∫
Xn

f (y)g(x − y)dµn(y) = q−n
∑
y∈Xn

f (y)g(x − y).

The one-parameter family (pt ,n)t>0 is a semi-group under
convolution (since clearly (p̂t ,n)t>0 is a multiplicative
semi-group), and

∫
Xn

pt ,n(x)dx = 1 for all n and for all t > 0
(since p̂t ,n(0) = 1). It remains to show that the pt ,n are positive:

Lemma
We have pt ,n(x) > 0 for all x ∈ Xn, all n and all t > 0, hence
(pt ,n)t>0 defines a probability distribution over Xn.



Probability measures on the space of
Skorokhod functions

From now on we will work on a fixed time interval [0, t ].
The space D[0, t ] of Skorokhod functions are the functions
defined on [0, t ] with values in K which satisfy the following two
criteria:

1 For each s ∈ (0, t), f (s±0) exist; f (0 + 0) and f (t −0) exist.
2 f (s + 0) = f (s) for all s ∈ [0, t), and f (t) = f (t − 0).

We will use the densities ps,n to construct, for each n and for
each a ∈ Xn, a probability measure Pn

a on the space D[0, t ], and
subsequently show that these measures converge weakly to
the measure Pa on D[0, t ] which is constructed from ps. The
measure Pn

a will give full measure to the paths which take
values in the grid Xn.



Construction of measures on the space
of Skorokhod functions I

Pick a point a ∈ Xn, fix N time points t1 < t2 < · · · < tN , and for
each i = 1, . . .N, pick a Borel subset Ji of K . We define a
measure Pn

a on the cylinder sets {ω : [0, t ]→ K : ω(ti) ∈ Ji} by

Pn
a(ω(ti) ∈ Ji) (17)

=
∑

bi∈Ji∩Xn, 1≤i≤N

pt1,n(b1 − a) · · · ptN−tN−1,n(bN − bN−1)q−nN .

(18)

By Kolmogorov’s Extension Theorem [Øks98, Thm. 2.1.5], Pn
a

has a unique extension to a probability measure on Ω[0, t ], the
space of all functions ω : [0, t ]→ K , equipped with the
σ-algebra generated by all cylinder sets. To get a probability
measure on D[0, t ], equipped with the Borel sets coming from
the Skorokhod topology, we need to check the Čentsov



Construction of measures on the space
of Skorokhod functions II

criterion, which says: If there are constants α, β, γ,C > 0 such
that

EPn
a
(|Yt1 − Yt2 |

α|Yt2 − Yt3 |
β) ≤ C|t1 − t3|1+γ (19)

for all 0 < t1 < t2 < t3, then there is a unique measure on D[0, t ]
which satisfies the condition (17). Here EPn

a
denotes the

expectation w.r.t. the measure Pn
a, and Ys denotes the random

variable Ys(ω) = ω(s), ω ∈ Ω[0, t ], s ∈ [0, t ]. The random
variables Ys define a process with independent increments with
respect to each of the measures Pn

a.



Weak Convergence of Unconditioned
Measures

Theorem
Let an ∈ Xn, a ∈ K be such that an → a as n→∞. Then

Pn
an ⇒ Pa as n→∞

where⇒ denotes weak convergence of measures.



Conditioned measures

Let a,b ∈ Xn. We define the conditioned measure Pn
a,b,t of a

Borel set A ⊂ D[0, t ] by6

Pn
a,b,t (A) =

Pn
a(A ∩ (ω(t) = b))

Pn
a(ω(t) = b)

. (20)

Let an and bn be sequences of grid points converging to a and
b respectively. Then for time points t1, ..., tN in [0, t ] and balls Ji
in K

Pn
an,bn,t (ω(ti) ∈ Ji) =

Pn
an ((ω(ti) ∈ Ji) ∩ (ω(t) = bn))

Pn
an (ω(t) = bn)

. (21)

6Here and in the following we use the probabilist’s notation for sets:
(ω(t) = b) is a shortcut notation for the set {ω : ω(t) = b}.



Weak Convergence of Conditioned
Measures

Theorem
If an ∈ Xn → a ∈ K and bn ∈ Xn → b ∈ K , then Pn

an,bn,t ⇒ Pa,b,t .
The convergence is uniform when (a,b) varies in compact
subsets of K × K .

Theorem
For each a ∈ Xn the measure Pn

a gives full measure to the paths
on the grid, that is,

Pn
a(ω : ω(s) ∈ Xn,∀s ∈ [0, t ]) = 1 (22)



Feynman-Kac formulas I
For the Hamiltonian H over K :

(e−tH f )(x) =

∫
K

Kt (x , y)f (y) dy , f ∈ L2(K ) , (23)

where

Kt (x , y) =

∫
D[0,t]

e−
∫ t

0 v(ω(s)) ds dPx ,y ,t (ω) · pt (y − x) . (24)



Feynman-Kac formulas II

At the finite level we can similarly prove:

Theorem (Feynman-Kac at the finite level)

(e−tHn f )(x) =

∫
Xn

K n
t (x , y)f (y) dµn(y)

= q−n
∑
y∈Xn

K n
t (x , y)f (y), f ∈ L2(Xn)

(25)

where

K n
t (x , y) =

∫
D[0,t]

e−
∫ t

0 vn(ω(s)) ds dPn
x ,y ,t (ω)·pt ,n(y−x), x , y ∈ Xn .

(26)



Convergence of propagators

Lemma
K n

t converges continuously to Kt , i.e., if xn ∈ Xn → x ∈ K and
yn ∈ Xn → y ∈ K as n→∞, then

K n
t (xn, yn)→ Kt (x , y).

In particular, K n
t converges uniformly to Kt on compact sets.

The proof uses the Feynman-Kac formula (21).



Stochastic proof of main theorem

Theorem
For any t > 0,

Tr(e−tHn )→ Tr(e−tH) (27)

||e−tHn − e−tH ||1 → 0 (28)

as n→∞.
Convergence in trace norm implies convergence in operator
norm which gives convergence of eigenvalues and
eigenfunctions (see pp. 289-290 in [RS80]). Thus we have
reproved by stochastic methods the main convergence theorem
(16).
However, the stochastic method gives an even stronger
convergence result, namely uniform convergence on compacta
of the eigenfunctions:



Uniform Convergence on Compacta of
Eigenfunctions

Theorem
Let fn,j and fj be eigenfunctions of Hn and H corresponding to
the eigenvalues λn,j and λj respectively. Assume that λn,j
converges to λj and that fn,j converges to fj in L2(K ). Then

fn,j → fj (29)

uniformly on compacta.
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The Schwinger model

In order to illustrate the remarkable accuracy of the Schwinger
model, we present on the following pages some numerical
results for the harmonic oscillator with N = 5,21, and 81 points
in the grid.The finite eigenfunctions and the Hermite functions
are rendered in the same diagram, and, as can be seen, the
finite eigenfunctions lie smack on the Hermite functions,
already at N = 5. Also, the eigenvalues show good agreement
already at N = 5, and at N = 81 the first 11 eigenvalues are
exact up to machine accuracy.

We also present some tables where we compare the
Schwinger model with the finite difference model, showing clear
superiority of the former over the latter.



Schwinger eigens with N = 5

Eigenvalues for H5

0.4969786369997017
1.538153655416401
2.273277799898967
3.512928870280916
4.745031651763187
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Eigenfunction no. 0

for H5 (dotted) and H (smooth).
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Eigenfunction no. 1

for H5 (dotted) and H (smooth).
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Eigenfunction no. 2

for H5 (dotted) and H (smooth).



Schwinger eigens with N = 21

Eigenvalues for H21

0.4999999999999396
1.50000000000396
2.499999999873056
3.500000002436515
4.499999963136251
5.500000389175935
6.499996311530578
7.500024950572093
8.499832644686019
9.500769902078664

10.49608851334482
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Eigenfunction no. 0

for H21 (dotted) and H (smooth).
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Eigenfunction no. 1

for H21 (dotted) and H (smooth).
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Eigenfunction no. 10

for H21 (dotted) and H (smooth).



Schwinger eigens with N = 81

Eigenvalues for H81

0.50000000000002
1.500000000000014
2.500000000000016
3.499999999999992
4.499999999999959
5.5
6.500000000000021
7.500000000000014
8.499999999999976
9.500000000000012
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Eigenfunction no. 0

for H81 (dotted) and H (smooth).
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Eigenfunction no. 1

for H81 (dotted) and H (smooth).
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Eigenfunction no. 40

for H81 (dotted) and H (smooth).



Comparison of Schwinger model and
finite difference model, N = 81

N=81, 7 decimals
Exact Schwinger Finite diff.
1/2 0.5000000 0.4975640
3/2 1.5000000 1.4877712
5/2 2.5000000 2.4680608
7/2 3.5000000 3.4382768
9/2 4.5000000 4.3982546

11/2 5.5000000 5.3478205
13/2 6.5000000 6.2867905
15/2 7.5000000 7.2149698
17/2 8.5000000 8.1321509
19/2 9.5000000 9.0381131
21/2 10.5000000 9.9326202



Comparison of Schwinger model and
finite difference model, N = 241

N=241, 7 decimals
Exact Schwinger Finite diff.
1/2 0.5000000 0.4991839
3/2 1.5000000 1.4959143
5/2 2.5000000 2.4893615
7/2 3.5000000 3.4795090
9/2 4.5000000 4.4663402

11/2 5.5000000 5.4498380
13/2 6.5000000 6.4299851
15/2 7.5000000 7.4067638
17/2 8.5000000 8.3801562
19/2 9.5000000 9.3501440
21/2 10.5000000 10.3167088



Coulomb potential

Table: Numerical result with n = 350 and ε = (2π/n)1/2

Exact values Numerical values
-1 -0.9814558

-1/4 -0.2505890, -0.2505890,-0.2505890, -0.2483674
-1/9 -0.11136023,-0.11136023, -0.11136023, -0.11121653,

-0.11121653, -0.1111883, -0.1111883,-0.1111883,
-0.1106982

-1/16 -0.06260630, -0.06260630, -0.06260630, -0.06254948,
-0.06254948,-0.06254293, -0.06254293, -0.06254293,
-0.06252377, -0.06252377, -0.06252377, -0.06252227,
-0.06252227, -0.06252227, -0.06251815, -0.06231906
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Numerical results for the Schrödinger
operator over Q3[

√
3]

Let as before H = Pα + V denote the Schrödinger operator
over a local field K . The eigenfunctions of H can be divided into
two main types, corresponding to two complementary
subspaces of L2(K ): those which are supported on a single
spherical shell (which we shall call shell functions), and those
which are radial7. Of these, only the shell functions are
completely understood: They belong to eigenvalues which can
be determined from Diophantine equations, and there are
explicit formulae for them. For radial eigenfunctions no such
explicit formulae seem to be known.

7With terminology as in [VVZ94], the set of shell functions comprises all
the type I functions plus the shell functions of type II; the radial functions are
all of type II.



In this numerical study we specialize to the case of the
Schrödinger operator H = 1

2(P2 + Q2) of the harmonic
oscillator over the local field Q3[

√
3], which is a quadratic and

totally ramified extension of Q3. We were interested in the
following questions:
• Do eigenfunctions of both types (shell functions and radial

functions) show up already at the finite level?
• Is there good agreement between the theoretical and

numerical eigenvalues?
• Is there good agreement between the theoretical and

numerical eigenfunctions?
• Are multiplicities correct?

The answer to all these questions was ’yes’. To illustrate this,
we sum up some of the results in Table 2.



The extension Q3[
√

3]/Q3 is totally ramified, so with standard
notation we have e = 2, and hence f = 1 since
ef = [Q3[

√
3] : Q3] = 2. Further, from q = pf follows q = p = 3,

and as uniformizer we can take β =
√

3, hence
|β| = 1/q = 1/3. For the exponent of the different we have
d = 1, so the canonical character χ associated with these data
becomes

χ(x) = exp
(

2πi{TrQ3[
√

3]/Q3
(
√

3
−1

x)}
)

, x ∈ Q3[
√

3].



For the finite model we did experiments with n = 1,2,3,4, so
we were working with finite grids of sizes |X1| = 9,
|X2| = 92 = 81, |X3| = 93 = 729, and |X4| = 94 = 6561,
respectively. Of particular interest to us was how the
eigenfunctions came out: Would they clearly exhibit
characteristics as shell functions or radial functions? They did.
To illustrate this we give in the last table an excerpt from the
value tables of three eigenfunctions: one is radial, one is a
linear combination of two shell functions, and one is a pure shell
function. We also wanted to compare our numerically computed
eigenfunctions to the theoretical ones (evaluated on the grid).
To do this, we measured the distance from each of the former
to the linear span of the latter. Up to machine accuracy (10−16),
the distance came out as zero. We find this quite remarkable.



The following two tables should be self-explanatory8. The data
are taken from a computer run with n = 2 (i.e., 81 points in the
finite grid). Each of the functions in the last table is represented
with 28 values, with values coming from each of the 5 shells
which occur for n = 2.

8In the estimate for the lowest eigenvalue in Table 2 (first entry in column
1) we are assuming that the estimate given in [VVZ94, p. 190] is valid also in
our setting.



Table: Numerical approximations to the spectral data of H = 1
2 (P2 + Q2) over

Q3[
√

3].

Theoretical
eigenvalue

Numerical eigen-
value

Theoretical mul-
tiplicity

Numerical multi-
plicity

Type of
eigenfunction

Comment

0 < λ0 < 9/13
≈ 0.6923

0.6684 1 1 radial

? 4.6922 ? 1 radial
? 4.7158 ? 1 radial
5 5.0000 2 2 shell function 2 = 1 + 1:

Coming from two
different shells.

9 9.0000 4 4 shell function All supported on
the same shell.

? 40.5213 ? 2 radial
40 + 5/9 =
40.5555 . . .

40.5555 2 2 shell function 2 = 1 + 1:
Coming from two
different shells.

41 41.0000 8 8 shell function 8 = 4 + 4:
Coming from two
different shells.

45 45.0000 24 24 shell function 24 = 12 + 12:
Coming from two
different shells.



The following page is extracted from [BD15]. The function
values 0 in columns 2 and 3 are rounded values of numbers of
the order 10−16 or smaller (machine accuracy).
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Table 2. Eigenfunctions for three different eigenvalues, 28 values
for each function, coming from all the 5 shells. Both kinds of
eigenfunctions occur (shell functions and radial functions). – Shell
no. k (k = 2, 1, 0,−1,−∞) is the shell |x| = 3k (so shell no. −∞ is
the shell |x| = 3−∞ = 0).

Eigenfunction for the lowest

eigenvalue λ ≈ 0.6684 .
It exhibits a perfect radial
behavior. Notice also that
the function is strictly posi-
tive, in accordance with the
corresponding statement for
the case K = Qp in [VVZ94,
p. 186].

Eigenfunction for λ = 5 .
Eigenfunctions here are lin-
ear combinations of shell
functions from two differ-
ent shells (shells 1 and 0).
As should be expected, the
function below exhibits non-
radial behavior, being non-
constant on each shell where
it doesn’t vanish (shells 1
and 0).

Eigenfunction for λ = 9 . It
exhibits a perfect shell func-
tion behavior, with support
on shell no. 1.

Shell no. Shell no. Shell no.
3.5818432 · 10−1 −∞ 0 −∞ 0 −∞
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
5.5430722 · 10−5 2 0 2 0 2
1.2747433 · 10−2 1 −2.3459638 · 10−1 1 5.9907185 · 10−2 1
1.2747433 · 10−2 1 2.3459638 · 10−1 1 −4.1084268 · 10−1 1
1.2747433 · 10−2 1 −2.3459638 · 10−1 1 −1.0595734 · 10−1 1
1.2747433 · 10−2 1 2.3459638 · 10−1 1 2.7644342 · 10−2 1
1.2747433 · 10−2 1 −2.3459638 · 10−1 1 4.6050157 · 10−2 1
1.2747433 · 10−2 1 2.3459638 · 10−1 1 3.8319834 · 10−1 1
3.1960943 · 10−1 0 3.9500330 · 10−2 0 0 0
3.1960943 · 10−1 0 −3.9500330 · 10−2 0 0 0
3.5768544 · 10−1 -1 0 -1 0 -1

Department of Mathematical Sciences, The Norwegian University of Science and
Technology, 7491 Trondheim, Norway

E-mail address: erikmaki@math.ntnu.no

Department of Mathematical Sciences, The Norwegian University of Science and

Technology, 7491 Trondheim, Norway

E-mail address: digernes@math.ntnu.no


	review of finite approximations
	Finite approximations over the reals
	Discrete spectrum
	Mixed spectrum: Atomic potential (from the thesis of Erik M. Bakken)

	Finite approximations over local fields (discrete spectrum)
	Preliminaries
	Finite models
	Standard methods
	Stochastic methods

	References
	Appendix: Numerical results
	Numerical results over R
	Numerical results over K


	Pages from fin approx loc fields_2

